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ABSTRACT

SR

A problem arises when conventional kinematic equations

that minimize computational time are used to model a rigiad

s

x revolute robot arm. Mathematical singularities result when

N«

successive link axes "line up" such that their angles are 0

or 180 degrees. This may result in erratic and

AN Y

o D
44, 0

uncontrollable motion of the arm until it moves away from

P

the point of singularity. One solution is to spend a
fﬁ minimum amount of time at the singular position or to avoid
ﬂi: it altogether. Another solution is to use other sets of
) equations, instead of the regular resolved-rate equations,
Y to model the robot arm. This thesis shows how using
egquations based on Newton's Second Principle of dynamics
for a three link, two degree of freedom manipulator, the
é problem of singularity is avoided. The equations are

- demonstrated in a simulation program.
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Y COMPUTER TEXT DESCRIPTION
SYMBOL VARIABLE
-‘_‘-
ii A A Sine wave input torque data
- ampl itude
AA Aa Acceleration of point a
RN AB Ab Acceleration of point b
N
- AG1 Agl The acceleration vector of
o ~ the center of gravity for
3 link 1
’.
N AG2 Qg? Same as Agl but for link 2
AG3 Ag3 Same as Agl but for link 3
i AO0X aox Linear acceleration of link
S zero in the x direction
e A0y aoy Linear acceleration of link
o zero in the y direction
‘{-'
A02 aoz Linear acceleration of link
¢ Zero in the z direction
;ﬁ AX1 axl Linear acceleration of link
:ﬁ 1 in the x direction
\ \"
i AY1 ayl Linear acceleration of link
% l in the y direction
'3: AZ1 azl Linear acceleration of link
j« l in the z direction
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COMPUTER

SYMBOL

AX2

AY2

AZ2

AX3

AY3

AZ3

CTHETX(3)

CTHETY(3)

CTHETZ(3)

DEGRA

ETHETX(3)

ETHETY(3)

ETHETZ(3)

TEXT

VARIABLE

ax2

ay2

az2

ax3

ay3

az3

cox

céy

coz

ox

DESCRIPTION

Linear acceleration of link
2 in the x direction

Linear acceleration of link
2 in the y direction

Linear acceleration of link
2 in the z direction

Linear acceleration of link
3 in the x direction

Linear acceleration of link
3 in the y direction

Linear acceleration of link
3 in the z direction

A 1x3 vector Cartesian
value of the angle theta
for 1link 1-3 in the x
direction, results from
taking the integral of
angular acceleration in the
x direction twice, in
degrees

Same as cOx but in the y
direction

Same as c0z but in the z
direction

Conversion from degrees to
radians

A 1x3 vector of euler
angles for link 1-3 in thex
direction, in degrees

Same as ox but in the y
direction

Same as 6x but in the 2z
direction




COMPUTER
SYMBOL

EULORY(3)

ERROR(3)

ERRT1X

ERRT2X

FXO0

FYO0

F20

FX1

FYl

F21

FX2

FY2

F22

TEXT
VARIABLE

they3

Error(3)

Errtlx

Errt2x

Fxo

Fyo

Fzo

Fx1l

Fyl

Fzl

Fx2

Fy2

Fz2

DESCRIPTION

Theoretical Euler angle for
link 3 in the y direction,
in degrees

% error between théy3 and
6y for the third link in
the y direction

% error between computed
and input value of torque
at joint 1

Same as Errtlx but at joint
2

Computed force in the x
direction at joint 0

Computed force in the y
direction at joint 0

Computed force in the 2z
direction at joint 0

Computed force in the x
direction at joint 1

Computed force in the y
direction at joint 1

Computed force in the z
direction at joint 1

Computed force in the x
direction at joint 2

Computed force in the y
direction at joint 2

Computed force in the 2z
direction at joint 2

Gravitational constant




COMPUTER
SYMBOL

HDX(2)

HDY(2)

HDZ(2)

Ia

IER

IDGT

IXX(3,2)

IYY(3,2)

122(3.2)

IX2(3,2)

IXY(3,2)

I1Y2(3,2)

TEXT
VARIABLE

HDx

HDY

HDz

Ixx

Iyy

I1zz

Ixz

Ixy

Iyz
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DESCRIPTION

The time rate of change of
angular momentum of a 2
element composite body in
the x direction

Same as HDx but in the y
direction

Same as HDx but in the 2z
direction

Counter

Row dimension of matrix A
and matrix B used in LEQT2F
subroutine

Error parameter used in
subroutine LEQT2F

Accuracy test used in
subroutine LEQT2F, for
iterative improvement

A 3x2 matrix of #Moment of
Inertia for the two element
composite body of link 1-3
about the x axis

Same as Ixx but about the y
axis

Same as Ixx but about the z
axis

A 3x2 matrix of Products of
Inertia for the two element
composite body of 1ink 1-3
about the xz coordinate
axes

Same as Ixz but for the xy
axes

Same as Ixz but for the yz
axes
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RS
e COMPUTER TEXT DESCRIPTION
= SYMBOL VARIABLE
o IXXA(3,2) Ixxa Theoretical Moment of
AN inertia for 1link 3 abnut
b joint 2
,‘\
v
) JXO0 jxo Location of joint 0 in the
x direction
JYO jyo Location of joint 0 in che
y direction
J20 jzo Location of 3joint 0 in the
: z direction
JX1 jx1 Location of joint 1 in the
R x direction
-Ei JY1l iyl Location of Jjoint 1 in the
. y direction
7
v J21 izl Location of joint 1 in the
o z direction
.
ff' . JX2 ix2 Location of 3joint 2 in the
- x direction
di Jy2 jy2 Location of joint 2 1in the
T y direction
" Jz2 jz2 Location of Jjoint 2 in the
i 2z direction
:E: L(3,2) L(3,2) A 3x2 matrix that is the
S distance from center of
o link to center of mass at
N each link end
{Et LCOGX(3) LCOGx A 1x3 location of center ot
N2 gravity vector for link 1-3
T in the x direction
N LCOGY(3J) LCOGy Same as LCOGx but for the y
- direction
O .
N LCOGZ(3) LCOGz Same as LCOGx but for the 2

direction

11




COMPUTER TEXT
SYMBOL VARIABLE
M

MASS(3,2) Mass(3,2)
MASS1 M1l

MASS2 M2

MASS3 M3
MATA(27,27) MatA
MATB(27) MatB

MI

MJ

MK

MIAO, MJAO and

MKAO

MIBO, MJBO and

MKBO

12

DESCRIPTION

Used in LEQT2F subroutine
as number of right hand
sides

A 3x2 matrix of mass of
each element that make up
the composite body for link
1-3

Total mass of link 1

Total mass of link 2
Total mass of link 3

A 27x27 matrix consisting
of coefficients of the
unknown variables

A 1x27 vector consisting of
the coefficient of known
variables on input to
subroutine LEQT2F and an
output the solution to the
linear equations

Results from subroutine
CPROD, i component of
vector cross product

) component of vector
cross product

k component of vector
cross product

Cross product between wdl

and RB/G1 at Jjoint o0,
link 1, in the x, vy, z
direction

Cross product between wl

and RB/Gl at joint O, link
l, in the x, y, z direction




COMPUTER
SYMBOL

MICO,
MKCO

MIAl,
MKAl

MIB1,
MKB2

MIC1,
MIC1

MIA2,
MKA2

MIB2,
MKB2

MIC2,

MKC2

MIA3,

MJA3

MIB3,
MKB3

MJCO

MJAl

MJB1

MJC1l

MJA2

MJB2

MJC2

MJA3

MJB3

and

and

and

and

and

and

and

and

and

TEXT
VARIABLE

13

DESCRIPTION

Cross product between wl
and MIBO, MJBO and MKBO at
joint 0, 1link 1, in the x,
Y, 2z direction

Cross product between wdl
and RA/Gl at joint 1, link
1, in the x, y, z direction

Cross product between wl
and RA/Gl at joint 1, link
1, in the x, y, z direction

Cross product between wl
and MIBl, MJB1 and MKBl
respectively at joint 1,
link 1, in the x, vy, z
direction

Cross product between wd2
and RB/G2 at joint 1, link
2, in the x, y, z direction

Cross product between w2
and RB/G2 at joint 1, link
2, in the x, y, z direction

Cross product between w2
and MIB2, MJB2 and MKB2
respectively at joint 1,
link 2, 4in the x, vy, z
direction

Cross product between wd2
and RA/G2 at joint 2, link
2, in the x, y, z direction

Cross product between w2
and RA/G2 at joint 2, 1link
2, in the x, y, and =z
direction




COMPUTER
SYMBOL

MIC3, MJC3
MKC3

MIA4, MJA4

MKA4

MIB4, MJB4
MKB4

MIC4, MJIC4
MKC4

RUN

RX(3,2)

RY(3,2)

R2(3,2)

and

and

and

and

TEXT
VARIABLE

Rx(3,2)

Ry(3,2)

Rz(3,2)

14

DESCRIPTION

Cross product between w2
and MNIB3, MJB3 and MKB3
respectively at Jjoint 2,
link 2, in the x, vy. 2z
direction

Cross product between wd3l
and RA/G3 at joint 2, link
3, in the x, y, z direction

Cross product between w3
and RA/G3 at joint 2, link
3, in the x, y, z direction

MJC4, MJC4 and Cross
product between w3 and
MIB4, MJB4, and MKB4
respectively at Jjoint 2,
link 3, at the x, vy, z
direction

Used in LEQT2F subroutine
for the order of MatA and
number of rows of vector B

Phase angle of sine wave
input to joints

Number of the run
conducting

A 3x2 wmatrix consisting of
the distance from the
center of gravity of the
link to center of mass for
the elements of link 1-3 in
the x direction

Same as Rx(3,2) but in the
y direction

Same as Rx(3,2) but in the
z direction
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COMPUTER
SYMBOL

RAG1(3)

RBG1(3)

RAG2(3)

RBG2(3)

RBG3(3)

SUMHDX(3)

SUMHDY (3)

SUMHDZ (3)

THETXR(3)

THETYR(3)

THETZR(3)

ToX, TOY
TO2

TEXT
VARIABLE

reigl

rb/G1
P~

ra/G2

rb/G2
N

ZHDx

ZHDy

Z£HDzZ

Tox, Toy.,
Toz

DESCRIPTION

A 1x3 vector,
point a to

distance of
center of

gravity for 1link 1, in the
X, ¥, 2z direction
A 1x3 vector, distance of

point b to canter of
gravity for 1link 1, in the
X, Y, 2 direction

A 1x3 vector, distance of
point a to CoG for link 2,
in the x,y,z direction

A 1x3 vector, distance of
point b to CoG for link 2,
in the x, y, z direction

A 1x3 vector, distance of
point b to CoG for link 3,
in the x, y, z direction

A 1x3 vector, sum of HDX
for the two elements of
link 1-3 in the x direction

Same as THDx but in the y
direction

Same as £HDx but in the z
direction

A 1x3 vector of euler
angles in the x direction
in radians for link 1-3

Same as THETXR(3) but in
the y direction
Same as THETXR(3) but in

the z direction

Input torque at joint 0 at
the x, y, z direction
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. COMPUTER TEXT DESCRIPTION

~ SYMBOL VARIABLE
T1X, T1Y Tlx, Tly Input torque at joint 1 at
T12 Tiz the x, y, z direction
T2X, T2Y T2x, T2y Input torque at joint 2 at
T22 T22 the x, y, z direction
THDDOT(3) Theoretical value of wdx

for link 3 in degrees

THEORY (3) Theoretical value of wdx
for link 3 in radians

THEXR1, THEXR2, Second integral of wdx for

THEXR3 links 1-3 in radians

THEYR1, THEYR2, Second integral of wdy for

THEYR3 links 1-3 in radians

THEZR1, THEZR2, Second integral of wdz for

THEZR3 link 1-3 in radians

TORY1X Torylx Computed value of torque
for joint 1

TORY2X Tory2x Computed value of torque
for joint 2

TX1, TX2, TX3 Euler angle theta converted

to radians for links 1-3
respectively in the x
direction

TYl, TY2, TY3 Euler angles theta
converted to radians for

links 1~3 respectively in
the y direction

TZ1, 132, T23 Euler angles theta
converted to radians for
links 1-3 respectively in
the z direction

VECTAQ(3) and 1x3 vector used in
VECTBO(3) subroutine CPROD for joint
0
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COMPUTER TEXT
SYMBOL VARIABLE

VECTA1(3) and
VECTB1(3)

VECTA2(3) and
VECTB2(3)

VECTA(3) and

VECTB(3)

W )

Wl, W2, and Wl,W2,¥3
W3

WX(3) wx(3)
WY(3) wy(3)
WZ2(3) wz(3)
WDX(3) wdx(3)
WDY(3) wdy(3)
WDZ(3) wdz(3)
WKAREA

X1, X2 and

X3

Y y

17

-----

DESCRIPTION

1x3 vector used in
subroutine CPROD for joint
1

1x3 vector used in
subroutine CPROD for joint
2

1x3 vector used in
subroutine CPROD

Frequency of sine function
input

Weights of 1link 1, 2, and 3
A 1x3 vector of angular
velocity of link 1-3 in the

x direction

Same as wx(3) but in the y
direction

Same as wx(3) but in the z
direction

Angular acceleration of
link 1-3 in the x direction

Angular acceleration of
link 1-3 in the y direction

Angular acceleration of
link 1-3 in the z direction

Work area for
subroutine

LEQT2F

Location of center of
gravity for link 1-3 in the
x direction

Theoretical value of y
distance from Fz2 to center
of gravity of link 3




COMPUTER
SYMBOL

¥Yl, Y2 and
¥3

21, 22 and
23

TEXT
VARIABLE

DESCRIPTION

Location of center of
gravity for link 1-3 in the
y direction

Theoretical value of 2z
distance from Fy2 to center
of gravity of link 3

Location of center of
gravity for link 1-3 in the
2z direction
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I. INTRODUCTION

Manipulator models which use local coordinates as a

bagis for simulation and control have a mathematical

singularity built into them (Ref. 1). This singularity

occurs when rigid robot 1links align such that their
relative position is either 0° or 180°. When this happens,
the inverse of the Jacobian matrix becomes impossible to
compute and the forward dynamics solution cannot be found.

In the control of serial link manipulators there have
been various approaches which use 1local coordinates to
achieve computational efficiency. One method deals with the

Newton-Euler approach (Refs. 2, 3], another uses the

Si Lagrangian approach [Refs. 4, 5]} or there is the method of
. virtual work (Ref. 6]. Still another that has tried to make
the solution to the dynamic equations computationally
efficient by wusing Kane's Dynamical equations [(Ref. 7).
However, although these methods have been computationally
efficient, they have not been able to handle the problem of
singularity [Ref. 1).

20
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Various methods have been proposed to deal with the

problem of singularity. One such method is to minimize the
time near the singularity [(Ref. 8], thereby reducing its
effects. Another solution is to avoid the position of the
manipulator that caused the singularity (Refs. 9, 10].
However, when using resolved rate equations the arm may
pass through a point of singularity anyway, in response to
a command [Ref. 11). Nakamura and Hanafusa (Ref. 12] have
proposed to determine the joint motion for the requested
motion of the end effector by evaluating the feasibility of
the joint motion. This determined joint motion is called an
inverse kinematic solution with singularity robustness.
Other solutions deal with presenting equations that can
translate the manipulators in the neighborhood of
singularity [Refs.13,14] and in identifying geometric
singular positions {Ref. 15].

It has also been shown that redundancy of robot
manipulators 1is effective 1in dealing with singularities
(Ref. 16). Klein and Huang [Ref. 17] have studied the
method of pseudo-inverse control, for use with redundant
manipulators, with recommendations for improvement.
Uchiyama (Ref. 18] proposed switching the control mode in
the neighborhood of singular points from the mode using
inverse kinematics to the 3Jjoint control mode. A seven
degree of freedom kinematic design with a spherical

shoulder joint was proposed {Refs. 19, 20], as well as a
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seven joint robot [Ref. 21]) to handle singularity. A four
degree of freedom wrist was studied to overcome wrist
singularity (Ref. 22]. Shih [Ref. 23] 1looked at the
physical quantities and combinations of physical quantities
which are unaffected by redundancy to simplify the
solution of a redundant system. However, even though there
are some redundant manipulators constructed (Refs. 24, 251,
research cannot do away with singularities, and so
consideration still has to be given to the control of the
manipulator in case of inadvertant singularities.

This paper will derive equations of motion using the
First Principles of Newtonian dynamics in terms of global
coordinates in order to eliminate the problem of
singularity. By the method of free body analysis, each link
of the manipulator is treated as if it were a free body
with forces and moments applied at the joints. Only
revolute joints will be considered. Although tedious and
time consuming (computer time), this paper will show by
simulation how the problem of singularity may thus be

overcome.
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II. ROBOT MODELLING AND SIMULATION PROBLEM

This thesis does not deal with the control aspect of
rigid, revolute linkages but rather the mathematical
dynamic wmodelling. Given the dynamic model, the link masses
and inertia properties, initial link alignments, and joint
torques, then the joint forces, acceleration, velocity and
position can be predicted via a simulation program. In the
present approach, all dynanmic properties except for
acceleration and forces were assumed to remain constant
over a simulated time interval. This assumption linearized
the equation of motion so that a simple matrix inversion
could be used to solve for the unknowns. As shown in Figure
1, the simulation is updated with the predicted velocity
(é) and position (), following integration at the next
time step. Simulation validation is done by comparing the
theoretical position (they3) to the predicted position
{ey3) for 1link 3 and actual torgue (Tlx, T2x) to computed

torque (Torylx, Tory2x) for links 2 and 3.

x n 1 S :
—= 2 Inteqrator (—2-€ o

!

Fignre 1. Manipulator Simulation rlock Diagram
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THEORETICAL DEVELOPMENT

A. MANIPULATOR ARM CONFIGURATION

This thesis develops a generalized simulation program
for a robot manipulator that 1is a serial connection of
three rigid 1links, Jjointed by one-degree of freedom
revolute joints. Joint actuators are assumed to be located
between successive links to apply the torque necessary to

position the link.

B. THEORY

The method of solution is based on the principle of
free body analysis. For this approach each body of the
three link manipulator is treated as if it were a free body
with forces and moments applied at each joint, as shown in
Figure 2. The global cartesian coordinate system X, Y, 2 as
well as force and moment torque conventions are also
evident in the figure. Note that a local coordinate system,
that is a coordinate system that 1is local to each joint,

will not be used but rather a single global system will be
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adopted. So all positions, distances, etc., will be
referenced to the base of the manipulator system which will
be at joint zero. The effects of flexibility of the robot
manipulator will not be considered since ideal, rigid
bodies are assumed.

In developing the dynamic eguations of motion for each
link Newton's Second Principle of Motion is used. The known
variables are torque at the Jjoints, mass of each link,
linear acceleration of joint zero, initial angular
acceleration, angular velocity and position of all links.
The unknowns are the forces at the joints, 1linear and

subsequent angular accelerations of the links.

C. DYMNAMIC EQUATIONS OF MOTION OF LINK ONE
1. Sum of Forces Equations
In the free body analysis of link one (Figure 2) the

sum of the forces in the x direction is:

ZFx=Fx1 - Fx0= Mlaxl (1)
Similarly sum of the forces in the y direction is:

EPy=Fyl - FyO=Mlayl (2)

and the sum of the forces in the z direction is:

LFz=Fzl - Fz0 - Wl=Mlazl (3)

..........................
.........
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2. Joint Equations

i We begin by evaulating the joint equations at joint
v,
f zero (Ref. 26, equation (8/4), pp. 423). If the joint is

sequested and analysis conducted at a point on link zero
e (subscript a) and another at a point on link one (subscript
2 b) that is common to both, so when linked together they are

equal. This results in two equations and the two unknowns
wdl and wl.
As a result:
Aa = Ag
which is the acceleration at joint zero,
and
Ab = Al +(wdl X rb/Gl) + wli X (qi X rb/G1)
which is the acceleration of point b on joint one. Here
rb/Gl is the distance from point b to the center of gravity
of link one, and Al is the acceleration at the center of
mass of link one or,
rb/Gl=(3x0-LCOGx1)1 + (Jy0-LCOGyl)3 + (3z0-LCOGzl)k
=rb/Glx + rb/Gly + rb/Glz
After equating Aa and Ab and having the known variables on
the right side of the equation and unknown variables on the
left side the following sets of equations result:
Axl + wdyl(rb/Glz)-wdzl(rb/Gly)= Aox-MICO (4)

wvhere MICO equals

-
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ﬁ? =wylwxl(rb/Gly)-w"yl(rb/Glx)-w?z1(rb/Glx)

' + wzlwxl(rb/G1lz)
;2 also
35 Ayl +wdzl(rb/Glx)-wdxl(rb/Glz)=Aoy-MJCO (%)
= vhere MJCO equals
\ =wzlwyl(rb/G1lz)-w*z(rb/Gly)-w*x1(rb/Gly)
\ + wxlwyl(rb/Glx)
x4 and
_3 Azl + wdxl(rb/Gly)-wdyl(rb/Glx)=Aoz-MKCO (6)
fi MKCO equals

J =wxlwzl(rb/Glx)-v’xl(rb/Glz)—v’yl(rb/Glz)

+ wylwzl(rb/Gly)
3. dum of Moment Equations
Computing the sum of the moment eguations about the )
Eﬁ center of gravity results in:
E% EM1=(r0/Gl X FO) + (rl/Gl X F1)-T1 + TO
W where the vector rQipl is the distance from joint zero to
- the center of gravity of link one and vector r1/Gl 1is the
é: distance from Jjoint one to the center of gravity of link
f- one, in the x, y and z directions. Such that
§§ re/Gl = rjo-rGi
Eﬁ and
r;ifl = ri}-;ﬁ}

- s
’ rj0-rGl=(xj0-xG1)i + (y30-yGl)3 + (z30-zGl)k
¥ and

= 28
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rjl-rGl = (xj1-xGl1)i + (y3jl-yGl)j + zjl-zGl)k
In the x, y and z directions the sum of moment equations
are:

ZM1l in x direction=

RN Y

(-y3J0/G1)Fz0 + (z3j0/Gl)Fy0 + (yjl/G1l)Fzl-(z31/Gl)Fyl
-Tlx + TOx (7a)
£M1l in y direction=

(-z30/G1)Fx0 + (x3j0/Gl)Fz0 + (zjl1/Gl)Fxl- (xjl1/Gl)Fzl

b, -Tly + TOy (8a)
5 EM1 in z direction=

(-xj0/G1)Fy0 + (yjO/Gl)Fx0 + (xj1/Gl)Fyl-(y3j1/G1l)Fxl1l-Tlz
+ TOz (9a)

From Ref. 26, equation (517) pp.227 the sum of the moments

WA

about a fixed point that does not move with the body is
equal to the time rate of change of angular momentum of the
system (ﬁ) about the fixed point, zusé. In the present
study we have 1let each 1link be a composite body of two
- elements. The angular momentum (H) for a composite body
é vhere the number of elements of the body is two, about the

center of gravity of each link is H1-§: (R1 X (w X Ri))M{i,

4

where Ri is the distance from the center of gravity of each

link to the appropriate element (lor2) in the x, y and z

[ I ' B R

direction. So:

v,

Hx = £ (Ryi(wx(Ryi)-wy(Rx1))-Rzi(wz(Rxi)wx—(Rz1))IMi

RO NN A

Hx  =(R*yl(wx)-Ryl(Rxl) (wy)-Rz(Rx1) (wz) +  RzA(wx) M1

X
*(R’yZ(vz)-RyZ(sz)(vy)-RzZ(RxZ)(vz) + (R z2)wx)M2

20
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If Ixx = J‘ayz +Rz? dm,
and Ixy = IRny dm,
and
Ixz =IRny dm,
then:
Hx = [Ilxx(wx) - Ilxy(wy) - Ilxz(wz) )Ml
+ (I2xx(wx) - I2xy(wy) - I2xz(wz)]M2.
and
HDx = [Ilxx(wdx) - Ilxy(wdy) - Ilxz(wdz) )Ml
+ (I2xx(wdx) - I2xy(wdy) - I2xz(wdz) }M2 {(7b)
by assuming the moment of inertia does not change with time
but is constant for a given time interval.
By similar analysis it can be shown:
Hy= £| (Rzi(wy(Rzi)-wz(Ryi))-Rxi(wx(Ryi)-wy(Rxi)) M}
and if Iyy= IR:’ + Rz dm,
and Iyz= IRsz dm,

and Ixy= IRny dm

then:
HDy={1lyy(wdy)-Iiyz(wdz)-Iiyx(wdx) JMi
+ [(I2yy(wdy)-I12yz(wdz)-I12yx(wdx) M2 (8b)
and
Hz=é: (Rxi(wz(Rxi)~-wx(Rzi))-Ryi(wy(Rzi)-wz(Ryi))]IMi.

If Izz= IR:’ +Ry" dn,

So

30
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“S Hz={I1zz(wz)-Ilyz(wy)-Ilzx(wx) 1Ml
+ (I2zz(wz)-I2yz(wy)-I22x(wx) ]M2

)
'”ﬁ then

)

HDz={I1zz(wdz)-Ilyz(wdy)-Ilzx(wdx) 1Ml

a

- + (I2zz(wdz)~-I2yz(wdy)-I12zx(wdx) ]M2 (9b)
3 Combining equations (7a) and (7b) and keeping known
ig variables on the right side and unknown variables on the

; left side yields:
:; EMlx= (-yjo/Gl)Fzo + (zjo/Gl)Fyo + (y3l/Gl)Fzl
3

ui - (z31/G1)Fyl-HDx=T1x-Tox (7)
Y Combining equations (8a) and (8b) yields:

0

:q £Mly=(-2jo/Gl)Fxo + (xjo/Gl)Fzo + (zjl/Gl)Fxl
'.-::.
B - (x31/G1)Fz1-HDy=Tly-Toy (8)
“u

o

combining egquations (9a) and (9b) yields:

oy EM1z=-(xjo/Gl)Fyo + (yjo/Gl)Fxo + (xj1/G1)Fyl

R ~ (y31/G1)Fx1-HDz=T1z-Toz (9)
s D. LINK TWO EQUATIONS
A 1. Sum of Forces Eguations
3

. From the free body diagram (Figure 2) it follows
'\"

;2 that
[ \."}
i tFx=Px2 - Fxl=M2ax2 (10)
» tFy=Fy2 - Fyl=M2ay2 (11)
..

o gFz=Fx2 - Fzl=M2az2 (12)
o
2.
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is

the

2. Joint Eguations

Analysis is conducted at joint one where similar

equations are used as in joint zero with a point on link

one (a) and one on link two (b). For point a the equation

Aa= Al+ wdl X ra/Gl + wl X (wl X ra/Gl)

ra/Gl is a vector whose distance is measured from point a
AL
to the center of gravity of 1link one in the x, y and z

direction.

raiGl=(jx1—LCOle)1 + (jyl-LCOGyl)ji + (3zl-LCOGzl)k

=ra/Glx + ra/Gly + ra/Glz

For point b the equation is:

&p=A~2 + wd2 X rb/G2 + w2 X (w2 X rb/G2)

where rgécz is a vector wvhose distance is measured €from

point b to the center of gravity of link two.

rb/G2=(Jx1-LCOGx2)i + (jyl-LCOGy2)3 + (3z1-LCOGz2)k
=rb/G2x + rb/G2y + rb/G2z
Equating Aa and &9 and setting knowns and unknowns on
respective sides of the equation results in:
Ax2-Axl + wdy2(rb/G2z)-wdz2(rb/G2y)-wdyl(ra/Glz) +
wdzl(ra/Gly)=MIC1-MIC2 (13)
MICl=wylwxl(ra/Gly)-w2yl(ra/Glx)-w2zl(ra/Glx)

+ wzlwxl(ra/Glz)
MIC2=wy2wx2(ra/G2y)-w2y2(ra/G2x)-w2z2(rb/G2x)

+ wz2wx2(rb/G2z)



Ay2-Ayl + wdz2(rb/G2x)-wdx2(rb/G2z)-wdzl(ra/Glx)
+ wdxl(ra/Glz)=MJC1-MJC2 (14)
MICl=wzlwyl(ra/Glz)-w2zl(ra/Gly)-w2xl(ra/Gly)
+ wxlwyl(ra/Glx)
MIC2=wz2wy2(rb/G2z)-w2z2(rb/G2y)-w2x2(rb/G2y)
+ wx2wy2(rb/G2x)
AZ2-AZ1 + wdx2(rb/G2y)-wdy2(rb/G2x)-wdxl(ra/Gly)
+ wdyl(ra/Glx)= MKC1-MKC2 (15)
MKCl=wxlwzl(ra/Glx)-w2xl(ra/Glz)-w2yl(ra/Glz)
+ wylwzl(ra/Gly)
MKC2=wx2wz2(rb/G2x)-w2x2(rb/G2z)-w2y2(rb/G2z)
+ wy2wz2(rb/G2y)
3. Sum of the Moment Equations
These equations have a similar development as that
of link one:
IM2 =(rj1/G2) X F1l + (rj2/G2) X F2 + T1-T2
wvhere '
ril/G2=(x31-xG2)1 + (yj1l-yG2)3 + (2z31-zG2)k i

rj%i?Z-(ij-xGZ)l + (y32-yG2)3 + (z32-2G2)k

EM2x= -(y3jl-yG2)Fzl + (2J1-2G2)Fyl + (yj2-yG2)Fz2

- (232-2G2)Fy2 + T1lx-T2x (l16a)
tM2y= -(231-2G2)Fxl + (x31-xG2)Fzl + (232-zG2)Fx2

- (x3J2-xG2)Fz2 + Tly-T2y (l7a)
EM2z=- (xj1-xG2)Fyl + (yjl-yG2)Fxl + (xj2-xG2)Fy2

- (y32-yG2)Fx2 + T1lz-T2z (18a)
From angular momentum equation developed for link one, it
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can be shown for link two:

£M2x=HDx (16b)
£M2y=HDy (17b)
: £M2z=HDz (18b)

Combining equations (16a) and (16b) the following result:
-(y3l1-yG2)Fzl + (231-zG2)Fyl + (yj2-yG2)Fz2-(z3j2-2G2)Fy2
-HDx=-T1lx + T2x (16)
Combining equations (17a) and (17b) yield the following
result:
f -(2z31-2G2)Fxl + (x31-xG2)Fzl + (z32-2zG2)Fx2-(x32-xG2)Fz2
: -HDy=-Tly + T2y (17)
Combining equations (18a) and (18b) yield the following
result:
-(xjJ1-xG2)Fyl + (y3l-yG2)Fxl + (x32-xG2)FPy2-(yi2-yG2)Fx2

-HDz=-T1z + T2z (18)

E. LINK THREE EQUATIONS
1. Sum of Forces Equations

Following similar logic from that previously

developed:
EFx= -Fx2=M3ax3 (19)
EPy= -Fy2=M3ay3 (20)
EFz= -PFz2 - W3=M3az3 (21)

2. Joint Equations
With point a on 1link two and point b on link three

one gets for joint equations at joint two:
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L\_’a=l’\2‘ + (UQVZ X r?\,/GZ) + ‘!.,2 X (w} X ri’/GZ)
vhere ra/G2 is a vector whose distance is measured from
point a to center of gravity of link two in the x,y and z
direction.
r§L§2=(112—LCOGx2)i + (3y2-LCOGy2)j + (3z2-LCOGz2)k

ara/G2x + ra/G2y + ra/G2z
For point b

Ab=A3 + wd3d X rb/G3 + w3 X (w3 X rb/G3)
wvhere rb/G3 is a vector whose distance is measurec from
point b to center of gravity of link three in the x, y and
z direction.
rb/G3=(3x2-LCOGx3)1 + (Jy2-LCOGy3)3 + (3z2-LCOGz3)k
arb/G3x + rb/G3y + rb/G3z
Equating Aa and Ab and setting knowns and unknowns on the
respective sides of the equation results in:
Ax3-Ax2 + wdy3d(rb/G3z)-wdz3(rb/G3y)~wdy2(ra/G2z)
+ wdz2(ra/G2y)=MIC3-MICl (22)
MIC3=wy2wx2(ra/G2y)-w2y2(ra/G2x)-w2z2(ra/G2x)
+ wz2wx2(ra/G2z)
MIC4= wy3wx3(rb/G3y)-w2y3(rb/G3x)-w2z3(rb/G3x)
+ wzlwx3(rb/G3z)
Ay3 -Ay2 + wdz3(rb/G3x)-wdx3(rb/G3z)-wdz2(ra/G2x)
+wdx2(ra/G2z)=MJC3-MJCA (23)
HJC3=szvy2(ra/GZz)-v222(ra/G2y)—v2:2(ra/GZy)

+ wx2wy2(ra/G2x)
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MJC4~=wz3wy3(rb/G3z)-w2z3(rb/G3y)-w2x3(rb/G3y)

+ wxdwy3(rb/G3x)
AZ23-A22 + wdx3(rb/G3y)-wdy3(rb/G3x)-wdx2(ra/G2y)

+ wdy2(ra/G2x)= MKC3-MKC4
MKC3=wx2wz2(ra/G2x)-w2x2(ra/G2z)-w2y2(ra/G2z)

+ wy2wy2(ra/G2y)
MKC4=wx3wz3(rb/G3x)-w2x3(rb/G3z)-w2y3(rb/G3z)

+ wy3wz3(rb/G3y)

3.5um of Momept Equations

As in the developmant of the equations for link one:

EM3=(rj2/G3) X E2 + T2
~ ~J -~

where rjELG3=(x12-xGS)1 + (y32-yG3)3 + (z3j2-2G3)k
=x32/G3 + y32/G3 + 2z32/G3
EM3x=(-yj2/G3)Fz2 + (z32/G3)Fy2 + T2x
EM3y= (-2z32/G3)Fx2 + (x3J2/G3)Fz2 + T2y
EM3z=(-x3J2/63)Fy2 + (vi2/G3)Fx2 + T2z
From the angular momentum theory:
IM3x=HDx (25b)
EM3y=HDy (26b)
EM3z=HDz (27b)
Combining equations (25a) and (25b) the following results:
(-y32/G3)Fz2 + (232/G3)Fy2-HDx= -T2x (25)
Combining equations (26a) and (26b) the foliowing results:
( (-z32/G3)Px2 +(x32/G3)Fz2-HDy= -T2y (26)
Combining equations (27a) and (27b) the following results:

(-x32/G3)Fy2 + (yj2/G3)Fx2-HDz= -T2z (27)
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IV. COMPUTATIONAL APPROACH

The 1language chosen to write the program was the
Digital Simulation Language (DSL) using Fortran 77 coding.
This 1language does an excellent dynamic simulation that
allows the user to be interactive, with real time
processing vice batch mode processing commonly used with
the Continuous System Modelling Program (CSMP), and all
calculations done in double precision. The source code
produced for this program was complied on an IBM 3033

computer using a Fortran 77 compiler.

A. PRINCIPLE PROGRAM MATRICIES

A 27x27 Matrix A (MatA) was created from the
coefficients of the unknowns (forces, linear acceleration
and angular acceleration) from equations (1) to (27).
Correspondingly a 27x1 Matrix B (MatB) was generated from
equations (1) to (27) f£from all knowns (torques, angular
velocities, link masses, and various positions). Subroutine
CPROD was used to conduct all cross products required in
the main program. Subroutine (LEQT2F) was then called from
the IMSL 1library. This subroutine takes MatA inverts it,
multiplies it by MatB and solves the generalized equation

Ax=b for the b vector using Gaussian elimination with
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iterative improvement to get accuracy within six decimal
digits. The output from LEQTZ2F returns from the subroutine
via MatB. This output is then used by the INTGRL DSL
statement to take the integral of angular acceleration
(wdx, wdy, wdz) to get angular velocity (wx, wy, wz) and
again to get the position of the 1link with respect to theta
(c6x, cOy, c6z) for each torque input per time step. The
cartesian orientations are converted to Euler angles (ox,
0y, 02) prlor to returning to the beginning of the progranm.
The method used to solve the second order differential,
equation for accelerations is invoked by ADAMS which is the
second order, variable step integration ADAMS method. This
method was shown to be the fastest (CPU time) and wmost
accurate of the methods available (Ref. 8). Similarly,
INTGRL is applied to find the linear acceleration (A) of
each 1link, velocity (V) and finally the position of the
center of gravity of the link. These newly found values are
fed back into the beginning of the simulation program for

the next time step until the end of the interval. This

process is summarized in Figure 3.
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Constraints are also built into the simulation program

that enable the operator to limit the movement of the links
in the yz plane for a two dimensional demonstration of
link-three-only movement. The constraints are also used for
link two and three movement. The constraints are applied by
zeroing out a row, except for the diagonal which is set to
1.0. The MatB entry is set to the constrained value.

It 1s Aduring this simulation that a differentiation
should be made between the cartesian theta (c6) position
developed by the INTGRL function (Figure 4a) and the Euler
angler theta (6) used as direction angles in computing
distances (Figure 4b). When in the yz plane the angular
acceleration is about the x axis and when the integral is
taken twice with respect to time, what results is the angle
theta about the x axis. This cartesian angle is defined as
c6x and is obviously not the same as the theta angle used
to position the link initially which 1is defined as oy. To
resolve this discrepancy when c6x 1is computed it is
converted to the euler angle 0y by setting the two equal so
0y=cox, in a two-dimensional simulation. Additionally,
euler angle 0z=900-6y and 6x=90° whenever simulating, two-

dimensional yz plane motions.
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B. PROGRAM VALIDATION

Validation of the simulation program takes place in two
vays.

1. Validation of Ope Link Case

For link three the theoretical value of theta in the

x direction (thex3), is compared to the value of theta in
the x direction (6x3) that the simulation computed for each
time step (Appendix A has the program listing).

As a test case,the torque delivered at joint two was
assumed to be:

T2x=10sin(2xt).
Also, Ixxa, the moment of inertia about joint two, is egual
to mass at the end of the link M(3,2) times the distance
from joint two to the mass at the end of the link, squared

or,

Ixxa=M(3,2) x (L(3,2) + L(3.1)?.
This may be used to solve for thox by taking the integral
with respect to the time which results in:
thex3=T2x
Ixxa

‘e t
It thex3 dt=-10 cos (2xt)
o Ixxa(2x) 0

théx3=(=10 (cos2xt) + 10 ) 1
2%

2% Ixxa

L 4 .
IthexS dt= thex3=(-10 sin(2xt) + 10t )1 + X
L4

qu**2 2x Ixxa 4
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For comparison % error is used so

% error={the3j-6x3) x 100
max thox3

2. Yalidation of Two Links Case
For the validation of two links the computed torques

at joints two and joint one (Tory2x, Torylx) are compared
to the torques that are actually input (T2x, T1lx) at each
time step (Appendix B has the program listing). If there
are no effects of singularity then the theoretical torque
and input torque should be very similar. From Figure 2 the
sum of the moments about the center of gravity of link
three is:

EM3=M3(L(3,2)2(wdx(3))=T2x + Fz2y - Fy2z
so

T2x=M3(L(3,2))2(wdx(3)) - Fz2y + Fy2z=Tory2x
where

y=L(3,1)(cos(6y3))

Fy2=(-M3)(ay3)

z=L(3,1)(cos(6y3))

Fz2=(-M3) (az3)

Sum of the moments about the center of gravity of 1link two

is:
EM2=Ixx2(wdx(2))=T1x-T2x + Fzlcos(ey2)(L(2,1))
~-Fylsin(ey2)(L(2,1)) + Fz2cos(ey2)(L(2,2))
-Fy2sin(ey2)(L(2,2))

so
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Tlx=M2(L(2,2))2(wdx(2)) + T2x-Fzlcos(6y2)(L(2,1))

+ Fylsin(ey2)(L(2,1))-Fz2(L(2,2))cos(6y2)

+ Fy2sin(ey2)(L(2,2))=Torylx
where
Fz1=Fz2-M2(az2)
Fyl=Fy2-M2ay2.
For comparison the % error is used for difference in
torque for joint two and joint one:
Errt2x=(Tory2x-T2x)/(maxTory2x) x 100

Errtlx=(Torylx-Tlx)/(maxTorylx) x 100
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V. RESULTS

A. MOVEMENT OF LINK THREE

Analysis of the movement of only link three shows very
good results for program validation. Figure 5 shows a plot
of Euler angles for both theoretical (théy3) and simulated
(6y3) values, the graph shows indistinguishable
differences. To further visualize the difference Figure 6
was plotted, which is the % error between thoéy and Oy
versus time. There seems to be greater error (0.0032%) at
around 0.8 seconds than at 0.2 seconds. This could possibly
be caused by error buildup in the computation due to round
off error from subroutine LEQT2F and truncation error from
approximating the sclution to the second order differential
equation by the ADAMS wmethod. Additionally, inaccuracies
could occur in estimating the value of = and using it in
trigonometric calculations.However,the &% error is small and

is acceptable to verify the proper operation of the program

for the single degree of freedom case.
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B. MOVEMENT OF LINK TWO AND THREE

Analysis of the movement of link two and three is the
crucial test of how the simulation deals with the problem
of singularity. A torque was input to joint two and an
opposite torque to joint one. At some point the alignments
of the two 1links will have some absolute angle of 00
(Figure 7) relative to each other. At this time |if
singularity exists there is no longer any control of the
links and accelerations and velocities vary abnormally,
never returning to the 1level they were at before the
singular position was reached [(Ref. 8). So the reason for
comparing the values of the computed torques (Tory2x,
Torylx) given the position variables solved for by the
simulation program and the torques input to the joints
(T2x, Tlx), is to check for abnormalities. Figure 8 shows
the graph of computed and input torques for joint two and
Figure 9 shows the graph of computed and input torques for

joint one versus time. The two curves match very well and

shows almost no deviation between them for the scale used.
When the % errors are plotted between computed torque
and input torque versus time for links two and one (Figures

10 and 11) again very little % error is observed with the

f‘.AALA.‘-! LN S T

largest being around 0.024% at time 2.8 seconds for torque
input at joint one. This may be attributed to the similar

reasons as the one-link since now both link two and three

are moving these errors are building as time increases. It

v -
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is also observed in Figure 10 that the % error 1is not
smooth but erratic and causes a ‘"spikey" curve fit.
However, the error comes back down to the zero plateau
instead of remaining at a high 1level which is what would

have happened had singularity occurred. The overall %

errors are small and so lends credability to the simulation

model. Figure 7 was plotted to see at what point the two
links align themselves and to get a picture of about how
long they are close (within one degree) to the point of
singularity. It appears to be 0.5 seconds which is enough

time for singularity to have a strong effect [Ref. 8]).
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VI. CONCLUSIONS

The ability of a global two degree of freedom robot arm
to maneuver through a point of singularity under applied
torques was demonstrated. This wvas verified by comparing
the computed torque at joint one and two in the x direction
to the values that were input. There were no unusual or
abnormal results occurring in the acceleration or

velocities and so little error was produced.
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VII. RECOMMENDATIONS

The following recommendations are provided:
l. Develop a linearized manipulator model and a
corresponding controller for the two degree of freedom
case.
2. Validate the approach via actual empirical tests for the
two dimensional case. This will establish the difficulty of
determining accurate constants for the simulation and
controller design.
3. Demonstrate the model and controller in 3 dimensions
with 3 links. The difficulty here arises in analyzing the
direction of a given joint torgque in 3 dimensions. This
could probably be done by finding a wunit normal vector
perpendicular to the joint in the x, y and z direction and
multiplying it by the torque magnitude.
4. Validate the approach by implementation for the three

dimensional case.
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APPENDIX A
SIMULATION PROGRAM FOR MOVEMENT OF LINK THREE

TERMINAL
METHOD ADAMS
PRINT .01 ETHETY(3) EULORY(3),ERROR(3)

CONTROL FINTIM =1.0. DELMAX =.01, DELPRT = .01
SAVE .01,ETHETY(3),EULORY(3),
GRAPH(DE=TEK618) TIME,ETHETY(
GRAPH(DE=TEK618) TIME,ERROR(3
GRAPH(DE=TEK618) TIME, EULORY(
D DIMENSION MATA(27,27),MA
D DIMENSION IXX(3 2§, 1%2(
D INTEGER IER,I RUN M,N,1
EXCLUDE IA,IDGT,IER.I,RUN.M.N
ARRAY MATB(27),LCOGX(3),LCOGY(3),

i

T

COGZ(3) ,ETHETX(3), ETHETY(3% ETHETZ(3)
ARRAY CTHETX§3§ CTHETY§3§,CTHETZ g

THDDOT§3; .IXXA(3),ERRO

ARRAY VECTAO(3).VECTBO(3) VECTAL1(3).VECTB1(3).VECTA2(3), vsc 52(3)
ARRAY WDX 3% WDY(3) ,WD2( ; WX (3) ,W¥¢(3),WZ(3),RBG1(3),RAGL(3), THEORY(3)
ARRAY RBG2( S,RAcz(a) RBG3(3),THETXR(3), THETYR(3),T ETZR(3) EULORY(3)

ARRAY HDX(Z2) HDY(2) ,HDZ(2)
ARRAY SUMHDX(3),S UMHD (3),SUMHDZ(3) ,WKAREA(850)
D DATA MATA/729 * 0./

INITIAL
* INPUT PARAMngg CONSTANTS

0.0
2*PI
IDGT = 4
=0.0
27

IA =27
RUN = 1

* INPUTJigINT LOCATIONS IN METERS

JYO0
JzZ0
JX1
JY1l
JZ1
JX2
Jy2
Jzz

* INPUT TOR
TOX

Z C) Doy
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UE CONSTANTS
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CEgTER OF LINK TO CENTER OF MASS FOR EACH LINK ENDS
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L(3,2) = 0.50

* INPUT MASS AT LINK ENDS IN KILOGRAMS
MASS(1,1) = 2.5
MASS(1,2) = 2.5
MASS(2,1) = 2.5
MASS(2,2) = 2.5
MASS(3,1) = 2.5
MASS(3,2) = 2.5
* INPUT OMEGA AND OMEGA DOT
Po 30 I =1,3
WX(I) = 0.0
WY(I) = 0.0
WZ2(I) = 0.0
WDX(I) = 0.0
WDY(I) = 0.0
WDZ(I) = 0.0
30 CONTINUE
* INPUT INITIAL VALUES OF EULER ANGLE THETA AND CONVERT TO RADIANS
ETHETX(1) = 90.0
TXl = ETHETX(I) * DEGRA
ETHETY(1) =
TYl = ETHETY(l) * DEGRA
ETHETZ(1l) =

TZ21 = ETHETZ(I) * DEGRA
ETHETX(Z) = 90.0

TX2 = ET HETX(Z) * DEGRA
ETHETY(Z) =

TY2= ETHETY(Z) * DEGRA

ETHETZ(2) = 90.0

TZ2 = ETHETZ(Z) * DEGRA
ETHETX(3) = 90.0

TX3 = ETHETX(3) * DEGRA
ETHETY(3) = 45.0

TY3 = ETHETY(B) * DEGRA
ETHETZ(B) =
TZ3 = ETHETZ(S) * DEGRA

* INPUT LOCATION OF LINK CENTERS OF GRAVITY
LCOGX(1) = 0.0
X1 = LCOGX(l)
LCOGY(1) = 0.5
¥l = LCOGY(l)
LCOGZ(1) = 0.0
2l = LCOGZ(l)
LCOGX(2) = 0.0
X2 = LCOGX(2)

Ul
O

LCOGY(2) = 1.5
Y2 = LCOGY(2)
Gz(2) = 0.0
22 = LCOGZ(2)
X(3) = 0.0
X3 = LCOGX(3)
THERAD = ETHETY(3) * DEGRA
LCOGY(3) = 2.0 + COS(THERAD) * L(3,1)
Y3 = LCOGY(3)
LCOGZ(3) ='L(3,1) * SIN(THERAD)
Z3 = LCOGZ(3)
* INPUT §§§§10F %A%H LINK IN KG AND COMPUTE WEIGHTS IN NEWTONS
MASS2 = 5.0
MASS3 = 5.0
W1 = MASS1*G
W2 = MASS2*G
W3 = MASS3*G
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* INPUT ACCELERATION OF JOINT ZERO
AOX 0.0

AQY = 0.0
AOZ = 0.0
DERIVATIVE
NOSORT
* INPUT JOINT EQUATIONS
* INITIALIZE MATRIX B TO ZERO
DO 10 I = 1,27
MATB(I) = 0.0
10 CONTINUE
* INPUT TORQUE AT JOINTS
A*SIN (W*ATIME +P)
* JOINT ZERO AB = AGl + (WDl X RB/Gl) + W1 X (W1 X RB/Gl)
VECTAO(l) = WDX(1
VECTAQ(2) = WDY(1
VECTAQ(3) = WDZ(1
RBG1(1) = JXO0 - LCOGX(1
RBGl(2) = JYO - LCOGY(1
RBG1(3) = JZ0 - LCOGZ(1
CALL CPROD(VECTAO,RBG1,MIAO,MJAO,MKAO)
VECTAO(1) = WX(1
VECTAO(2) = WY(1l
VECTAO(3) = WZ(1l
CALL CPROD(VECTAO RBG1,MIBO,MJBO,MKBO)
VECTBO(1) = MIBO
VECTBO(2) = MJBO
VECTBO(3) =

MKBO
CALL CPROD(VECTAO,VECTBO,MICO,MJCO,MKCO)
* JOINT ONE EQUATIONS--- AA = AGl + (WDl X RA/Gl) + W1 X (W1 X RA/Gl)

VECTAl(1l) = WDX
VECTAl(2) = WDY
VECTA1(3) = WDZ 1
RAGL1(l) = JX1 - LCOGX(1
RAGL(2) = JY1 - LCOGY(1
RAG1(3) = JZ1 - LCOGZ (1l
CALL CPROD(VEC TAl RAGl MIALl,MJAl,MKALl)
VECTAl(l) =
VECTAL(2) =
VECTAl 3 =
CALL CPROD (VE CTAl RAGl MIB1,MJB1,MKB1)
VECTB1(1l) =
VECTB1(2) = MJBl
VECTB1(3) = MKBI1
CALL CPROD (VECTAl,VECTB1,MIC1,MJC1,MKC1)
* AB = AG2 + (WD2 X RB G2) + W2 X (W2 X RB/G2)
VECTAl(l) = WDX(2
VECTAl(2) = WDY(2
VECTAl 3) = WDZ(2
RBG2 JX1 - LCOGX(2

RBOS(3) = J¥1 - Leooxts

RBG2(3 JZ1 - LCOGZ(2
CALL CPROD (VECTAl RBG2,MIA2,MJA2,MKA2)
VECTAL(l) =
VECTAl(2) = WY 2
VECTA1(3) = W2(2
CALL CPROD (V ECTAl RBG2,MIB2,MJB2 ,MKB2)
VECTB1(1) = MIB2
VECTIE1(2) = MJBZ
VECTB1(3) =

MKB2
CALL CPROD (VECTAl,VECTB1,MIC2,MJC2,MKC2)
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: JOINT TWO EQUATIONS

AR = AGZ + (WD2 X RA/G2) + W2 X (W2 X RA/G2)

VECTA2(l) = WDX(2
VECTA2(2) = WDY(2
VECTA2(3) = WDZ(2
RAGZ2(l) = JX2 - LCOGX(2
RAG2(2) = JY¥2 - LCOGY(Z2
RAGZ2(3) = J22 - LCOGZ(2

CALL CPROD (VECTAZ,RAGZ2,MIA3,MJA3,MKA3)
VECTAZ(1l) = WX(2
VECTAZ(2) = WY(Z2
VECTA2(3) = WZ(2

CALL CPROD (VECTA2,RAG2,MIB3,MJB3,MKB3)
VECTBZ(1l) = MIB3
VECTB2(2) = MJB3
VECTB2(3) = MKB3

CALL CPROD(VECTA2,VECTB2,MIC3,MJC3, MKC3)

* AB = AG3 + (WD3 X RB/G3) + W3 X (W3 X RB/G3)

VECTAZ(1) = WDX(3
VECTA2(2) = WDY{(3
VECTA2(3) = WDZ(3
RBG3(1) = JX2 - LCOGX(3
RBG3(2) = JY2 - LCOGY(3
RBG3(3) = JZ2 - LCOGZ(3

CALL CPROD (VECTA2,RBG3,MIA4,MKA4,MKA4)
TECTAZ(1l) = WX(3
VECTA2(2) = WY(3
VECTAZ(3) = WZ(3

CALL CPROD (VECTAZ,RBG3,MIB4,MJB4,MKB4)
VECTB2(l) = MIB4
VECTBZ2(2) = MJB4
VECTB2(3) = MKB4

CALL CPROD (VECTAZ,VECTB2,MIC4,MJC4, MKC4)

: SUM OF MOMENTS EQUATIONS

*

CONVERT EULE

ANGLES FROM DEGREES TO RADIANS

DO 40 I = 1,3

THETXR(I) = ETHETX(I) * DEGRA

THETYR(I) = ETHETY(I) * DEGRA

THETZR{I) = ETHETZ(I) * DEGRA

COMPUTE HX DOT,HY DOT,HZ DOT

RX(I,1) = -L(I,1) * COS(THETXR(I))
RX(I,2) = L(I,2) * COS(THETXR(I)
RY(I.1) = -L(I,1) * COS(THETYR(I))
RY(I,2) = L(I,2) * COS(THETYR(I)

RZ(I,1) = -L(I,1) * COS(THETZR(I))
RZ(I.2) = L(I,2) * COS(THETZR(I)
IXX(I,1)=MASS(I,1)* §RY 1,1 RY21,1;3+§R221,1
IXX(I,2)=MASS(I,2)*((RY(I.2}*RY(I 2))+(RZ(I.2

IXZ(I,1)=MASS(I,1 RZ(I.1) * RX(I,1
IXZ(I,2)=MASS(I,2) * RZ(I.2) * RX(I.2
IXY(I,1)=MASS(I,1) * RX(I.1) * RY{I,1
IXY(I,2)=MASS{I,2) * RX({I.2) * RY(I.2
Hstlg = WDX(1)*IXX 1,1g-woz Ig*rxz 1,13
HDX(2) = WDR(2)*IXX(I.,2)-WDZ(I)*IxX2(I.2
IYY(I,1) = MASS(I,1) * é RX§I,1 *RA(1,1)) + 5
IYY(I.,2) = MASS(I.2) * ((RX(I,2)*RX(1.2)) +
IYZ(I,1) = MASS(I.1) * RYéI,l; RZ(I.1
IYZ(I,2) = MASS(I 2) * RY(I.2) * RZ(I.2
HDYSl; = ongx *1YY 1,1;—wox§1g*rxy 1,1;
HDY(2) = WDY/{I)*IVY(I,2)-WDX(I)*IXV(I.2
12221,1; = MASSEI,I * 2 RX§I,1§*RX§I,1; +
122(I,2) = MASS(I 2) * ((RX(I,2)*RX(I.2)} +
HDZEI; = wpz(I§*122 1,1;-wox I;*IXZ 1,13
HDZ(2) = WDZ(I)*IZZ(I,2)-WDX(I)Y*IXZ(I,2
TRXA(T)=MASS(I,2)*((L(I,2)+L(I,1))**2)
SUMHDX(I) = HDX(1l) + HDX(2)

n
>
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SUMHDY(I) = HDYEI; + HDYEZg
SUMHDZ(I) = HDZ(1l) + HDZ(2
CONTINUE

TEST TO SEE WHICH CONSTRAINT IS IN EFFECT 1,2 OR 3
IF (RUN .EQ. 1) GO TO 1
IF (RUN .EQ. 2) GO TO 2
IF (RUN .EQ. 3) GO TO 3

INITIAIIZE MATRIX ACCORDING TO CONSTRAINT
DO 60 I = 1,18
MATA(I,I) = 1.0
CONTINUE
GO TO 4
Do 70 I = 1,9
MATA(I I) = 1.0
CONTINUE
GO To 7

ENTER CONSTANTS INTO MATRIX A
LINK ONE
SUM OF FORCES IN THE X DIRECTION
MATA(l,1) = 1.0
MATAél ,4) = MASS1
MATA(1,10) = -1.0

SUM OF FORCES IN Y DIRECTION

MATA(2,2) = 1.0
MATA(2,5) = MASS1
MATA(2,11) = -1.0

SUM OF FORCES IN Z DIRECTION

MATA(3, 3§ = 1.
MATA(3,6) = MASSl
MATA(3,12) = -1.0

SUM OF FORCES LINK ONE EQUAL
MATB(3) = -Wl

EQUATIONS AT JOINT ZERO
IN THE X DIRECTION

MATA(4,4) = 1.0
MATA(4,8) = RBG1(3)
MATA(4,9) = -RBGL(2)

MATB(4)= AOX - MICO
IN THE Y DIRECTION

MATA(S3,5) = 1.
MATA(S,7) = -RBGl(3)
MATA(5,9) = RBG1(1l)

MATB(5) = AOY - MJCO
IN THE Z2 DIRECTION
MATA(6,6) = 1.0
MATA(6,7 RBGl(Z)
MATA(6,8 -RBG1(1)
MATB(6) = A0Z - MKCO

SUM OF MOMENTS EQUATIONS FOR LINK ONE IN THE X,Y¥,Z DIRECTIONS

MATA(7,2) = RBG1(3)

MATA(7.3) = -RBGl$2)

MATA(7.7) = -(IXX(1,1) + IXX(1,2))
MATA(7.8) = IXY§1,1§ + IXYél,Zg
MATA(7.9) = IXz(1,1) + IXz(1 2
MATA(7 11) = -RAGL(3)
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Lo MATA(7,12) = RAGL(2)
;‘; MATB(7) = T1X - TOX
" MATA(8,1) = -RBG1(3)
. MATA(8.3)= RBGlgl)
N MATA(8,7) = IX¥(l,1) + IXY(1,2) .
) MATA(8,8) = -(Iy¥(1,1) + 1v¥(1,2))
" MATA(8.9) = IYZ(l,lg + 1v2(1,2)
NG MATA 8,10& = RAG1(3
ab' MATA(8,12) = -RAGI(1)
e MATB(8) = T1Y - TOY
MATA(9,1) = RBG1(2)
MATA(9,2) = -RBG1(1
- MATA(9.7) = 1xz§1,1 + Ingl,zg
MATA(9.8) = I¥Z({1.1) + IYZ({1.2
. MATA(9,9) = -(I2Z(1,1) + 122(1.,2))
) MATA 9,10; = -RAGL(2)
MATA({9,11) = RAGI(1)
2 MATB(9) = T1Z ~ T0Z
3 * LINK TWO
- * SUM OF FORCES IN X DIRECTION
N 7 MATA(10,10) = 1.0
ey, MATA$10,13§ = MASS2
x MATA(10,19) = ~1.0
" * SUM OF FORCES IN THE Y DIRECTION
N MATA(11,11) = 1.0
. MATA(11,14) = MASS2
. MATA(11.20) = ~1.0
It * SUM OF FORCES IN THE Z DIRECTION
MATA(12,12) = 1.0 -
MATA(12.15) = MASSZ
MATA(12.21) = ~1.0
L * SUM OF FORCES LINK TWO EQUAL
RS MATB(12) = -W2
. * EQUATIONS AT JOINT ONE
* IN THE X DIRECTION
‘ MATA(13,4) =
NS MATA(13.8) = -RAGI§3)
NS MATA(13.9) = RAGl(
S MATA(13.13) =
- MATA({13.17) = RBG2(3)
N MATA(13,18) = ~RBG2(2)
- MATB(13) = MICl - MIC2
N * IN THE Y DIRECTION
~ MATA(14,5) = -1.0
) MATA(14.7) = RAG1(3)
N MATA(14.9) = -RAGL(1)
. MATA(14.14) = 1.0
s MATA(14.16) = -RBG2(3)
MATA(14.18) = RBG2(1)

‘e

MATB(14) = MJC1 - MJC2

s * IN THE Z DIRECTION

N MATA(15,6) = -1.0

L MATA(15,7) = -RAG1(2)
o MATA(15,8) = RAG1(1l)
. MATA(15,15) = 1.0
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e MATA§15,163 = RBG2(2)
X MATA(15.17) = -RBG2(1)
¥
A MATB(15) = MKCl - MKC2
‘ %  SUM OF MOMENTS EQUATIONS FOR LINK TWO IN THE X,Y,2 DIRECTIONS
S MATA(16,11) = RBG2(3
N MATA(16.12) = -RBGZéz)
N MATA(16 16) = -(IXX(2,1) + IXX(2,2))
o MATA(16,17) = IXY?Z,I + IXYiZ,Zg
) . MATA(l6.18) = IXZ(2,1) + IX2(2,2
’ MATA(16.,20) = -RAG2(3
MATA(16,21) = RAG2(2)
’ MATB(16) = -T1X + T2X
o IF(RUN .EQ. 2) GO TO 11
MATA(17,10) = -RBG2(3)
. MATA(17.12) = RBG2(1)
* MATA(17.16) = IXY(2,1) + IXY(2,2)
. MATA(17.17) = -(IvY{2,1) + I¥Y(2,2))
MATA(17.18) = 1vZ(2,1) + 1vZ(2,2}
- MATA(17.19) = RAGZ2(3)
- MATA(17.21) = -RAG2(1)
< MATB(17) = - T1Y + T2Y
- MATA(18,10) = RBGZSZ)
- MATA(18.11) = -RBG2(1
MATA(18,16) = IX222,1 + Ixziz,zg
MATA(18.17) = IYZ(2,1) + IYz(2,2
> MATA(18,18) = -(IZZ$2 1) + 122(2,2))
iy MATA(18,19) = -RAG2(2)
- MATA(18,20) = RAG2(1)
> MATB(18) = - T1Z + T22
: 1F SRUN .EQ. 3) GO TO 4
11 MATA(17,17) = 1.0
oY MATA(18,18) = 1.0
o *  LINK THREE
o * SUM OF FORCES IN THE X DIRECTION
‘¢ 4 MATA(19,19) = 1.0
K MATA(19,22) = MASS3
. * SUM OF FORCES IN THE Y DIRECTION
N MATAéZO,Zog = 1.0
N MATA(20,23) = MASS3
> * SUM OF FORCES IN THE Z DIRECTION
. MATA221,21; =1.0
S MATA(21,24) = MASS3
: MATB(21) = -W3
*  EQUATIONS AT JOINT TWO
* IN THE X DIRECTION
MATA(22,13) = ~-1.0
A MATA(22.17) = -RAG2(3)
. MATA(22.18) = RAG2(2)
MATA(22.22) = 1.0
. MATA(2Z2.26) = RBG3(3)
. MATA(22.27) = -RBG3(2)
" MATB(22) = MIC3 - MIC4
¢ * IN THE Y DIRECTION
) MATA$23,14§ = -1.0
MATA(23.16) = RAG2(3)
M
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MATA(23,18) = -RAG2(1)
MATA(23.23) = 1.0
MATA(23.25) = -RBG3(3)
MATA(23.27) = RBG3(1)
MATB(23) = MJC3 - MJC4

* IN THE 2 DIRECTION
MATA(24,15) = -1.0
MATA (24 18 = -RAG2(2)
MATA(24,17) = RAG2(1)
MATA(24.24) = 1.0
MATA(24.25) = RBG3(2)
MATA(24.26) = -RBG3(1)
MATB(24) = MKC3 - MKC4

* SUM OF MOMENTS EQUATIONS FOR LINK THREE IN THE X,Y,Z DIRECTIONS
MATA(25,20} = RBG3(3)
MATA(25.21) = -RBcagz)
MATA(25.25) = -(IXX(3,1) + IXX(3,2))
MATA(25,26) = IXY23 1§ + XY§3,2§
MATA(25.27) = IXZ(3.1) + IXZ2(3,2
MATB(25) = - T2X
IF(RUN .EQ. 1 .OR. RUN .EQ. 2) GO TO 12
MATA(26,19) = -RBG3(3)
MATA(26.21) = RBG3(1)
MATA(26.25) = IXY(3,1) + IXY(3,2)
MATA(26.26) = -(IvZ(3,1) + IYY(3,2))
MATA(26.27) = 1¥Z(3,1) + 1¥Z(3,2}
MATB(26) = - T2Y
MATA(27,19) = RBG3(2)
MATA(27.20) = -RBG3(1
MATA(27.25) = IXZiB,l + IXZ$3'2§
MATA(27.26) = 1¥Z{3 1) + IYZ(3,2
MATA(27.27) = -(12Z(3,1) + 12Z(3,2))

MATB(27) = - T2Z

IF (RUN .EQ 3) GO TO 13

12 MATA(26 262 1.
MATA(27,27) = 1 0

* CALL EQUATION SOLVER PROGRAM FROM IMSL
13 CALL LEQT2F(MATA,M,N,IA,MATB,IDGT,WKAREA, IER)
IF (IER .NE. 0) CALL ENDJOB

* FIND LCOGX,LCOGY,LCOGZ,THETA VALUES, WX, WY,W2Z
1F (RUN ESQ 1) GO TO 6

IF (RUN 2) GO TO 9
* LINK ONE
AX1 = MATB(4)
VELX1 = INTGRL(O,AX1)
LCOGX1 = INTGRL(X1,VELX1)
LCOGX(1) = LCOGX1

AY1l = MATB(5)
VELYl = INTGRL(O,AYl)

LCOGYL =1
LCOGY (1) =

AZ1 = MATB(

VELZ1 = IN
LCOGZl =1
LCOGZ(l) =
WD1X = MAT

..........

-----
........

NTGRL(Yl VELY1)

LCOGY1

6)

TGRL(0,AZ1)

NTGRL(Zl VELZ1)
LCOGZ1

B(7)

64
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W1X = INTGRL(O,WD1X)

THEXR1 = INTGRL(TY1l,6W1X

JX0= LCOGX(1l) - L(1,1) COS(TX1)
WDX(1) = WD1X

WX(1l) = W1X
CTHETX?I; = THEXR1l * RADEG
ETHETY (1) = CTHETX(1l)

WD1lY = MATB(8)

W1Y = INTGRL(O,WD1lY)

THEYR1 = INTGRL(O.,WlY;

JY0 = LCOGY(l) - L(1,1) * COS(THEXR1)
WDY (1) = WD1Y

WY(l) = W1y

CTHETY(l) = THEYR1 * RADEG

WD1Z = MATB(9)

W12 = INTGRL(0,WD12Z)

THEZR1 = INTGRL(0.,W1Z)

WDZ(1) = WD1Z

WZ(1l) = W1z

CTHETZ?lg = THEZR1 * RADEG

ETHETZ(1) = 90.0 - CTHETX(1)

ETHEZ1 = ETHETZ(l1) * DEGRA

JZ0 = LCOGZ(l) - L(1,1) * COS(ETHEZ1)

LINK TWO
AX2 = MATB(13)

VELX2 = INTGRL(0,6AX2)
LCOGX2 = INTGRL(X2,VELX2)
LCOGX(2) = LCOGX2

AY2 = MATB(14)

VELY2 = INTGRL(0,AY2)
LCOGY2 = INTGRL(Y2,VELY2)
LCOGY(2) = LCOGY2

AZ2 = MATB(15)

VELZ2 = INTGRL(O,AZ2)
LCOGZ2 = INTGRL(Z2,VELZ2)
LCOGZ(2) = LCOGZ2

WD2X = MATB(16)

W2X = INTGRL(0,WD2X)
THEXR2 = INTGRL(TY2,W2X)
JX1 = LCOGX(2) - L(2,1) * COS(TX2)
WDX(2) = WD2X

WX(2) = W2X
CTHETXEZ; = THEXR2 * RADEG
ETHETY(2) = CTHETX(2)

WD2Y = MATB(17)

W2Y = INTRGL(O,WD2Y)

THEYR2 = INTGRL(O.,WZYg

JY1 = LCOGY(2) - L{2,1) * COS(THEXR2)
WDY(2) = WD2Y

WY(2) = w2y

CTHETY(2) =THEYR2 * RADEG

WD2Z = MATB(18)

W2Z = INTGRL(0,WD2Z)

THEZR2 = INTGRL(O.,W2Z)

wnz§2) = WD2Z

WZ(2) = W2z

CTHETZ(2) = THEZR2 * RADEG

ETHETZ(2) = 90.0 - CTHETX(2)

ETHEZ2 = ETHETZ(2) * DEGRA

JZ1 = LCOGZ(2) - L(2,1) * COS(ETHEZ2)

LINK THREE
AX3 = MATB(22)

VELX3 = INTGRL(0.,AX3)
LCOGX3 = INTGRL(X3,6VELX3)
LCOGX(3) = LCOGX3

AY3 = MATB(23)

VELY3 = INTGRL(O.,bAY3)
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LCOGY3 = INTGRL(Y3,VELY3)

LCOGY(3) = LCOGY3

AZ3 = MATB(24)

VELZ3 = INTGRL(O.,AZ3)

LCOGZ3 = INTGRL(Z3,VELZ3)

LCOGZ(3) = LCOGZ3

WD3X = MATB(25)

W3X = INTGRL(0.,WD3X)

THEXR3 = INTGRL(TY3 W3 )

J¥X2 = LCOGX(B) - L(3 1) * COS(TX3)

WDX(3) = WD3X

WX(3) = W3X

CTHETX?3§ = THEXR3 * RADEG

ETHETY(3) = CTHETX(3)

WD3Y = MATB(26)

W3Y = INTGRL(O.,WD3Y)

THEYR3 = INTGRL(O WBYg

Jyz = LCOGY(3) - L(3,1) * COS(THEXR3)

WDY(3) =

WY(3) = W3Y

CTHETY(3) = THEYR3 * RADEG

WD3Z = MATB(27)

W32 = INTGRL(O.,WD32Z)

THEZR3 = INTGRL(O ,W3Z)

WDZ(3) = WD3Z

WZ(3) = W3Z

CTHET223; = THEZR3 * RADEG

ETHETZ(3) = 90.0 - CTHETX(3)

ETHEZ3 = ETHETZ(3) * DEGRA

JZ2 = LCOGZ(3) - L(3,1) * COS(ETHEZ3)
DYNAMIC

THEO!;YI(ZZF((((-2.5/(PI*PI))*SIN(W*TIME) )+(5.*TIME)/PI)/IXXA(3))...
+ .

EULORY(3) = THEORY(3) * RADEG
THDDOT(3) = T2X/IXXA(3)
ERROR(3) = ((ABS(EULORY(3)-ETHETY(3)))/ 81.4/6)*100,
END
STOP
FORTRAN
* SUBROUTINE TO COMPUTE THE CROSS PRODUCT OF TWO VECTOR

SUBROUTINE CPROD(VECTA,VECTB,MI,MJ,MK)
IMPLICIT REAL*8 (A-Z)
DIMENSION VECTA(3), VECTB(3)

MI = VECTA(2) * VECTB - VECTA(3) * VECTB(2

MJ = VECTA(3) * VECTB - VECTA(l) * VECTB(3

MK = VECTA(1l) * VECTB 2 - VECTA(2) * VECTB(1l
RETURN
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APPENDIX B
SIMULATION PROGRAM FOTRH\ASE'EMENT OF LINK TWO AND

TERMINAL

METHOD ADAMS

PRINT .03,T1X,TORY1X,T2X,TORYZ2ZX 6 ERRTZX, ERRTIX ETHETY(2-3)
CONTROL FINTIM =3. 0, DELMAX =.01, DELPRT = .03

SAVE .01,ERRT2X ERRTIX TORY1XR, TORYZA T1X TZX ETHETY(2) ,ETHETY(3)
GRAPH(DE=TEK618 TIME,T1X, TORY1X

GRAPH(DE=TEK618 TIME,TZX,TORYZX

GRAPH(DE=TEK618) TIME, ERRT2X

GRAPH(DE=TEK518) TIME,ERRTIX

GRAPH(DE=TEK618) TIME ,ETHETY(3),ETHETY(2)
D DIMENSION MATA(27,27), ASS(3,2),L(3,2),RX(3,2),RY§3,2§,RZ(3,2)
D DIMENSION IXX(3,2),IX2(3,2),IXv(3,2),1¥¥(3,2),1Y2(3.2).122(3,2)
INTEGER IER,I,RUN.M,N,IA IDGT
EYCLUDE IA,IDGT,IER,I,RUN.M.N
ARRAY MATB(27),LCOGX(3),LCOGY(3),LCOGZ(3),ETHETX(3) ,ETHETY(3),ETHETZ(3)
ARRAY CTHETXEB%,CTHETY23;,CTHETZé3§
ARRAY VECTAQ(3),VECTBO(3) VECTAL(3), 6 VECTB1(3),VECTA2(3),VECTB2(3)
ARRAY WDX(3) WDY(3),WDZ(3},wWx(3),WY(3),WZ(3),RBG1(3),RAGL(3)
ARRAY RBG2(3%,RAG2(3),RBG3(3), THETXR<35,IHEIYR§3§,THEI2R(3)
ARRAY SUMHDX(3),SUMHDY(3),SUMHDZ(3) ,HDX(2),HDY(2) .HDZ(2),WKAREA(850)
D DATA MATA/729 * 0./
INITIAL
*  INPUT PARAMETER CONSTANTS
A= 2.0
P = 0.0
W = 2%PI
IDGT = 4
G=0.0
N=27
M=1
IA =27
RUN = 2
* INPUT JOINT LOCATIONS IN METERS
JX0 = 0.0
J70 = 0.0
JZ0 = 0.0
J¥1 = 0.0
JYl = 1.0
Jjzl = 0.0
JX2 = 0.0
JY2 = 2.0
J22 = 0.0
* INPUT TORQUE CONSTANTS
TOX = 0.0
TOY = 0.0
TCZ = 0.0
Ti7 = 0.0
TiZ = 0.0
T27 = 0.0
T2 = 0.9
*INPUT DISTANCE FRCM CENTER OF LINK TO CENTER OF MASS FOR EACH LINK ENDS
Til.1) = 0.8
L(zfzg = 3.80
Loty = 3,83
Tl = J.83

Palia it et
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e L§3 1; = 0.50
' 3,2) = 0.50
N
~ * INPUT MASS AT LINK ENDS IN KILOGRAMS
v MaSS(1,1) = 2.5
MASS({1,2) = 2.5
MASS(Z,1) = 2.5 .
‘ MASS(2,2) = 2.5
b MASS(3,1) = 2.5
> MASS(3,2) = 2.5
\ * INPUT OMEGA AND OMEGA DOT
DO 30I=1,3
WX(I) = 0.0
> WY(I) = 0.0
< wz(I) = 0.0
y WDX(I) = 0.0
. WDY(I) = 0.0
. WDZ(I) = 0.0
- 30 CONTINUE
* INPUT INITIAL VALUES OF EULER ANGLE THETA AND CONVERT TO RADIANS

ETHETX(1) = 90.0
TX1l = ETHETX(I% * DEGRA

, ETHETY(1) =
N Y1l = ETHETY(I) * DEGRA
: ETHETZ(1) =
121 = ETHETZ(I) % DEGRA
_ ETHETX(2) = 90.0
TX2 = ETHETX(Z% * DEGRA
% ETHETY(2) =
o TY2= ETHETY(2) * DEGRA
» ETHETZ(2) = 90,
- TZ2 = ETHETZ(Z % DEGRA
v ETHETX{3) = 90.0
w TX3 = ETHETXiB) * DEGRA
¥ ETHETY(3) =

TY3 = ETHETY(3) * DEGRA
ETHETZ(3) = 45
TZ23 = ETHETZ(B) * DEGRA

- * INPUT LOCATION OF LINK CENTERS OF GRAVITY
- LCOGX(1) = 0.0
- X1 = LCOGX(1)
- LCOGY(1) = 0.5
Y1 = LCOGY(1)
= LCOGZ(1) = 0.0

3) * DEGRA

)
COS(THERAD) * L(3,1)
.1) * SIN(THERAD)

P 0l D Nl WL S
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N * INPUT MASS OF EACH LINK IN KG AND COMPUTE WEIGHTS IN NEWTOCNS

jat RERE WS N )

“ele ay

NS ‘L
ftl: :(:(’:‘-i"._IAJALJALA.‘m °




-~

"
»

s s N "
e

R e T

- [
ALYl

L6

r
PadA

i ¥
o s

SOOCEEY

[ ." .("

.‘\\'.’

L AR A
PR

AN R AR AN

AR
« s 0’

o0

.
[
a
3

S d o

-

L s

* INPUT ACCELERATION OF JOINT ZERO
AOX = 0.0

a0Y = 0.0
A0Z = 0.0
DERIVATIVE
* INPUT JOINT EQUATIONS
NOSORT
* INITIALIZE MATRIX B TO ZERO
DO 10 I = 1,27
MATB(I) = 0.0
10 CONTINUE
* INPUT TORQUE AT JOINTS
T2X = -A*SIN (W*TIME +P)
T1X = A*SIN (W*TIME + P)
* JOINT ZERO AB = AGL +
VECTAO(1) = WDK(1
VECTAQ(2) = wD¥(l
VECTAO(3) = WDZ(1)
RBGL1(1) = JKO - LCOGX(1)
RBGL(2) = J¥0 - LCOG7(1)
RBG1(3) = J20 - LCoGzil)

(WDl X RB/Gl) + Wl

CALL CPROD(VECTAO,RBG1 ,MIAOQ,MJAO MKAOD)

VECTAO(1) = WX(1)
VECTAO(2, = WY(l)
VECTAD(3) = wWZ(l)

CALL CPROD(VECT
VECTBO(1) = MIBO
VECIBO(Z) = 1JBO
VEZTBO(3) = MKB:

CALL CPROD(VECT

*  JOINT ONE EQUATIONS--- AA = AGI + ‘WC1
VECTAL(Ll) = WDH' L
VETTAL(Z) = WDY L
JETTALII) = WDZ' i
RAGLUL) = i - L7
FAG1(2, = 7. - L
RAGL I = Z. - L

CALL TEEOLIVE TTAL FAG
VETTAL: L, = Wil
JETTALIZ)Y = Wil
JETTAL 2. = WD |

TALL TFFIL VETTAL RAL. MIB.
JETTBIL = viB,

VETTRL . = MUB.
JETTRL : o MYE,

TALL TPRCD CVE TAL VE TEL ™

. AB = AGI v Wi. X FE. .

JECTAL ~

VETTAL ,

VE TAL n

P"E Ere . I

LR ‘
AL iR T ot g
- e F -

AQ RBG1 MIB2 MJBO MKBO,

aJ VECTBC MITD MITo MF L.

wy

ey

MO "'"-'.-."'.c'.’,’.v',")',fff"T"T

X RB,Gi:




CALL CPROD (VECTAl,VECTB1,MIC2,MJC2,6MKC2)

* JOINT TWO EQUATIONS
* AA = AGZ + (WD2 X RA/G2) + W2 X (W2 X RA/G2)

VECTA2(1l) = WDX(2
VECTAZ2(2) = WDY(2
' VECTAZ2(3) = WDZ(2 .
, RAG2(1l) = JX2 - LCOGX(2
3 RAG2(2) = JYZ2 - LCOGY(2
; RAG2(3) = J22 - LCOGZ(2

CALL CPROD (VECTA2,RAG2,MIA3,MJA3,MKA3)

VECTA2(1l) = WX(2
VECTA2(2) = WY(2
VECTA2(3) = WZ(2
CALL CPROD (VECTA2,RAG2,MIB3,MJB3,MKB3)
VECTBZ2(1) = MIB3
VECTBZ2(2) = MJB3
VECTB2(3) = MKB3
CALL CPROD(VECTAZ,VECTB2,MIC3,MJC3,MKC3)
* AB = AG3 + (WD3 X RB/G3) + W3 X (W3 X RB/G3)
) VECTA2(1l) = WDX(3
. VECTAZ2(2) = WDY(3
: VECTAZ2(3) = WDZ(3
[ RBG3(1) = JX2 - LCOGX(3
. RBG3(2) = JY2 - LCOGY(3
RBG3(3) = J22 - LCOGZ(3
CALL CPROD (VECTAZ,RBG3,MIA4,MKA4,6MKA4) ‘
VECTAZ2(1l) = WX(3
VECTAZ2(2) = WY(3
VECTAZ2(3) = WZ(3
} CALL CPROD (VECTAZ,RBG3,MIB4,MJB4,MKB4)
VECTB2(1l) = MIB4 ;
L VECTIB2(2) = MJB4 .
4 VECTB2(3) = MKB4 ‘
. CALL CPROD (VECTAZ,VECTB2,MIC4,MJC4,6MKC4) ’

SUM OF MOMENTS EQUATIONS
ZONVERT EULER ANGLES FROM DEGREES TO RADIANS

DC 40 I = 1,3
THETHR(I% = ETHETX(I) * DEGRA o
THETYR(I) = ETHETY(I) * DEGRA ,
THETZR(I) = ETHETZ(I) * DEGRA :
. T"MPUTE HX H DOT X HY,H DOT Y, HZ H DOT Z
RX(I.1) = -L(I,1) * COS(THETXR(I)) :
FX(1,2) = L(I,2) * COS(THETXR(I) .
R7(I.1) = -L(I,1) * COS(THETYR(I)) r
RY(1.2) = L(I,2) * COS(THETYR(I) ¢
BZ(I 1) = -L(I, 1) * COS(THETZR(I)) !
RC:1,2) = L(I,2) * COS{THETZR(I) X
RO l‘=MASS(I,1)*(pRY§I‘l) RY}I,lgg*§RZ§I l;*RZ§I’l§§§
DKHT 2)=MASS(D,2)*{(RY(I ,2)*RY(I,2))+(RZ(1,2)*RZ(I,2
IAZ' I L1 )=MASS(I 1) * RZ(I 1) * RX(I,1 3
IXZ2:1 2. =MASS 1.2) * RZ(I,2) * RX(I,2
IXKY{I | =MASS(I 1, * Ri«I 1) * RY(I,1
IXY(I C . =MASS(I 2, * EX.I 2) * RY(I,2
HO¥ 1o = WDW/ 1) ¥ I, 1)-WDZ(I)*T#Z(I, 1)-WDY(I)*IxY 1,13 -
HIK 20 = WOR(2 i *TKH(T 2)-WOZ(I)*IKZ(1 2)-WDY(I)*I5v{I 2
IV? 1l i = MASS(I 17 * ((RX/I 1)*RX(I.1)) + QRZ(I,I)‘RZ(I.I));
TITOTC = MASSID 2) % CrRXUI,2)*RK(I.2)) + (RZ(I,2)*RZ(1,2))
DUTOD . = MASS I L0 * RY(I 1) * RZ(I.1)
TITOI L = MASS I EY 1L, *RINILZ)
e = CIUSITY DL -WDMO I INY(I 1)-WDZ I)*IVI(ILL)
SR DI D ZeWIE It IEY Ol 2y -WDZ(T IV, 2)
T : LT REL LRIl )+ (RUCTULYRYTIT L) )
A - S FESI OL0CREIT L) e CRY(I JVCRENCI M) .
o CIOZ T L eWIF T tINIUL LoewWDW (DO YIVIND L K
AL SIZC D 0 SWULACIITIAZ(IL 2 -WDT(IITIVII )




- SUMHDX(I) = HDX(1l) + HDX(2
- SUMHDY(I) = HDY(1l) + HDY(2
. SUMHDZ(I) = HDZ(l) + HDZ(2
X 40 CONTINUE
. *  TEST TO SEE WHICH CONSTRAINT IS IN EFFECT 1,2 OR 3
&) IF (RUN .EQ. 1) GO TO 1
) IF (RUN .EQ. 2) GO TO 2
N IF (RUN .EQ. 3) GO TO 3
e *  INITIAIIZE MATRIX ACCORDING TO CONSTRAINT
¥ 1 DO 60 I = 1,18
MATA(T,I) = 1.0
60 CONTINUE
GO TO 4
7 2 DO 70 I =1,9
S MATA(I,I) = 1.0
7 70 CONTINUE
% GO TO 7
) *  ENTER CONSTANTS INTO MATRIX A
. * LINK ONE
" * SUM OF FORCES IN THE X DIRECTION
" 3 MATA(1,1) = 1.0
b MATAgl 4) = MASSl
o MATA(1,10) = -1.0
* SUM OF FORCES IN Y DIRECTION
MATA(2, 23 = 1.0
MATA(2,5) = MASSl
2 MATA(2,11) = -1.0
= * SUM OF FORCES IN Z DIRECTION
- MATA(3, 3g = 1.0
- MATA 3 6) = MA 551
-, MATA(3,12) = -1.0
* SUM OF FORCES LINK ONE EQUAL
% MATB(3) = -W1
o * EQUATIONS AT JOINT ZERO
o * IN THE X DIRECTION
K MATA(4,4) = 1.0
E - MATA(4,8) = RBG1(3)
MATA(4.9) = -RBG1(2)
L MATB(4)= AOX - MICO
o
- * IN THE Y DIRECTION
v MATA(S5,5) = 1.0
< MATA(S5.7) = -RBG1(3)
- MATA({5.9) = £BG1(1)
- MATB(5) = AQ0Y - MJCO
~ * IN THE Z DIRECTION
< MATA(6,6) = 1.0
By MATA(6.7) = RBG1(2)
- MATA(6,8) = =-RBG1(1)
&Y
: MATB(6) = AOZ - MKCO
X *  SUM OF MOMENTS EQUATIONS FOR LINK ONE IN THE X,Y,Z DIRECTIONS
- MATA(7,2) = RBG1(3)
NS MATA(7.3) = -RBGIEZ)
~ MATA(7.7) = -(IXX(1,1) + IXX(1,2))
o MATA(?.8) = IXY21,1§ + IXYSl,Z?
MATA(7.9) = 1X2(1.1) + Ixz(1l.2
&S -1
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. MATA$7,11§ = -RAGL(3)
S MATA(7,12) = RAG1(2)
Y MATB(7) = T1X - TOX
MATA(8,1) = -RBG1(3)
MATA(8 3)= RBGlSl) .
h MATA(8.7) = IXY(1,1) + IXY(1,2)
' MATA(8,8) = -(IYY(1,1) + IYY(1l,2))
' MATA(8.9) = IYZ(1,1§ + 1v2(1,2)
, MATA 8,10; = RAGL(3
\ MATA(8,12) = -RAGL(1)
’ MATB(8) = T1Y - TOY
)
A MATA(9,1) = RBG1(2)
. MATA(9.2) = -RBG1(1
5 MATA(9.7) = IXZ§1,1 + IXZSI,Z;
: MATA(9.8) = I¥Z(1.1) + IYZ({1.2
. MATA(9,9) = -(I22{1,1) + I22{1,2))
. MATA 9,10; = -RAGL(2)
MATA(9,11) = RAGL(1)
MATB(9) = T1Z - TOZ
¢ *  LINK TWO
’ * SUM OF FORCES IN X DIRECTION
. 7 MATA(10,10) = 1.0
MATA$10,13; = MASS2
MATA(10.18) = -1.0
: * SUM OF FORCES IN THE Y DIRECTION
. MATA(11,11) = 1.0
. MATA(11,14) = MASS2
- MATA(11.20) = -1.0
* SUM OF FORCES IN THE Z DIRECTION -
MATA(12,12) = 1.0
MATA(12.15) = MASS2
. MATA(12.,21) = -1.0
y * SUM OF FORCES LINK TWO EQUAL
) MATB(12) = -W2
* EQUATIONS AT JOINT ONE
* IN THE X DIRECTION
MATA(13,4) = -1.0
MATA(13,8) = -RAGL(3)
MATA(13.9) = RAG1(2)
MATA(13,13) = 1.0
MATA(13.17) = RBG2(3)
MATA(13,18) = -RBG2(2) :
MATB(13) = MICl - MIC2 -
* IN THE Y DIRECTION .
MATA(14,5) = -1.0 p
MATA(14.7) = RAGL(3)
MATA(14.9) = -RAG1(1) ]
MATA(14.14) = 1.0
MATA(14,16) = -RBG2(3)
MATA(14,18% = RBG2(1)
MATB(14) = MJCl - MJC2
* IN THE Z DIRECTION :
MATA(15,6) = -1.0 X
MATA({15.7) = -RAG1(2) T
MATA(15,8) = RAGi(1)
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MATA(15,15) = 1.0
MATA(15,16) = RBG2(2)
MATA(15,17) = -RBG2(1l)

MATB(15) = MKC1 - MKC2
SUM OF MOMENTS EQUATIONS FOR LINK TWO IN THE X,Y,Z DIRECTIONS
MATA(16,11 RBG )

G2(3
MATA(16.12) = -RBGZ&Z)
MATA(16.16) = -(IXX{2,1) + IXX(2,2))
MaTAa(16.17) = IXY§2,1 + Ixygz,zg
MATA{16.18) = IXz(2.1) + IXz(2.2
MATA(16,20) = -RAG2(3
MATA(16,21) = RAG2(2)
MATB(16) = -T1X + T2X
IF(RUN .EQ. 2) GO TO 11
MATA(17,10) = -RBG2(3)
MATA(17.12) = RBG2(1)
MATA(17.16) = IXY(2,1) + IXY(2,2)
MATA(17.17) = -(1YY(2,1) + IYY¥(2.2))
MATA(17.18) = IYZ(2,1) + 1vZ(2,2}
MATA(17.19) = RAG2(3)
MATA(17.21) = -RAG2(1)
MATB(17) = - T1Y + T2Y
MATA(18,10) = RBG2(2)
MATA(18.11) = -RBG2(1
MATA(18.16) = IXZEZ 1) + Ingz,zg
MATA(18.17) = IvZ(2'1) + 1YZ(2.2
MATA(18,18) = -(12222 1) + 122(2,2))
MATA(18.19) = -RAG2(2)
MATA(18,20) = RAG2(1)
MATB(18) = - T1Z + T2Z
(RUN_.EQ. 3) GO TO 4
MATA(I? 172
MATA(18,18) =
LINK THREE
SUM OF FORCES IN THE X DIRECTION
MATA(19,19) =
MATA(19, 22) = MASS3
SUM OF FORCES IN THE Y DIRECTION
MATAszo,zog = 1.0
MATA({20,23) = MASS3

SUM OF FORCES IN THE Z DIRECTION
MATA§21 Zlg .0

MATA(21,24 NASS3
MATB(21) = -W3
EQUATIONS AT JOINT TWO

IN THE X DIRECTION
MATA(22,13) = -1.0
MATA 22 17) = -RAG2(3)
MATA 22,18 = RAG2(2)
MATA(22,22) = 1.0
MATA(22,26) = RBG3(3)
MATA(22,27) = -RBG3(Q)
MATB(22) = MIC3 - MIC4

IN THE Y DIRECTION
MATA223,14; = -1,
MATA(Z23,16) = RAGZ(3)

..........
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) MATA(23,18) = -RAG2(1)
» MATA(23.23) = 1.0
’ MATA(23.25) = -RBG3(3)
MATA(23.27) = RBG3(1)
e MATB(23) = MJC3 - MJC4
\ »
_§u * IN THE Z DIRECTION
. MATA(24,15) = -1.0
o MATA(24.16) = -RAG2(2)
X MATA(24.17) = RAG2(1)
P MATA(24.24) = 1.0
MATA(24.25) = RBG3(2)
‘ MATA(24.26) = -RBG3(1)
\.
X MATB(24) = MKC3 - MKC4
-,
~ * SUM OF MOMENTS EQUATIONS FOR LINK THREE IN THE X,Y,Z DIRECTIONS
N MATA (25,20} = RBG3(3)
, MATA(25.21) = -RBG3§2)
MATA(25.25) = -(IXX(3,1) + IXX(3,2))
.. MATA(25,26) = IXY§3,1§ + IXY§3,2§
= MATA(25 27) = IXz(3)1) + IX2(3,2
- MATB(25% = - T2X
.. IF(RUN .EQ. 1 .OR. RUN .EQ. 2) GO TO 12
o MATA(26,19) = -RBG3(3)
N MATA(26.21) = RBG3(1)
MATA(26.25) = IXY(3,1) + IXY(3,2)
. MATA(26.26) = -(IY¥(3,1) + IY¥(3,2))
o MATA(26,27) = 1vZ(3,1) + 1vZ2(3,2)
S MATB(26) = - T2Y
N MATA(27,19) = RBG3(2)
: MATA(27.20) = -RBG3(1
MATA(27.25) = IXZ(3,1) + 1xz<3,2;
] MATA(27.26) = IYZ(3.1) + 1YZ(3.2
- MATA(27.27) = -(122(3,1) + 122(3.,2))
- MATB(27) = - T2Z
7 IF (RUN .EQ. 3) GO TO 13
> 12 MATA(26,26) = 1.0
MATA(27,27) = 1.0
.4'
. * CALL EQUATION SOLVER PROGRAM FROM IMSL
" 13 cALL LEQT2F(MATA.M N,IA MATB IDGT,WKAREA,IER)
o IF (1ER NE. 0) CALL ENDJOB
» * FIND L: ocx LCOGY  LCOGZ . THETA VALUES WX WY .WZ
58 1) GO TO 6
3 XF (RUN Q. 2) GO T0 9
- . LINK ONE
- AXl = MATB(4)
” VELXL = INTGRL() AXi
’ LCOGX1 = IMTSRL. 4, VELKL.
1 LCNGX 1) = Ltocxx
A7l = MATB.
YELOL ¢ u:.yP‘ AT
; ’ ':';t'..= INTORU YL VELTL
. i s EORL
Ac - MATR -
‘ ELIL T OINTOR A
» ;F. - 4’ 'F:A . . E
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W1X = INTGRL(O,WD1X)
THEXR1 = INTGRL(TY1,W1X
JX0= LCOGX(1) - L(1,1) * COS(TX1)
WDX(1) = WD1X
wX(1) = Wi1X
CTHETX§1; = THEXR1 * RADEG
. ETHETY(1) = CTHETX(1)

WD1Y = MATB(8)
WlY = INTGRL(O, WDlY)
THEYR1 = INTGRL(O., Yg

- JY0 = LCOGY(1) - L{1,1) * COS(THEXR1)

' WDY(1) = WD1Y
WY (1) = WlY
CTHETY(1) = THEYRL * RADEG
WD1Z = MATB(9)
WlZ = INTGRL(0,WD1Z)
THEZRL = INTGRL(0.,6W1Z)
WDZ(1) = WD1Z
wZ(1) = Wiz
crﬂsrz§1g = THEZR1 * RADEG
ETHETZ(1) = 90.0 - CTHETX(I)
ETHEZL = ETHETZ(1) *
Jz0 = LCOGZ(1) - L(1, 1) * COS(ETHEZ1)

* LINK T
9 AX2 = MATB(13)
VELX2 = INIGRL(O.,AX2)
LCOGX2 = INTGRL(XZ VELX2)
LCOGX(2) = LCOGX2
AY2 = MATB(l4)
VELY2 = INTGRL(O.,AY2)
LCOGY2 = INTGRL(Y2,VELY2)
LCOGY(2) = LCOGY2
AZ2 = MATB(1S5)
VELZ2 = INIGRL(O.,AZ2)
LCOGZ2 = INTGRL(Z2,VELZ2Z)
- LCOGZ(2) = LCOGZ2
WD2X = MATB(16)
W2X = INTGRL(O.,WD2X)
THEXR2 = INTGRL(TY2,W2X)
JX1 = LCOGX%Z) - L(2,1) * COS(TX2)
WDX’'2) = WDZX
WA(2) = WeXK
CTHETX?Z; = THEXRZ * RADEG
ETHETY(2) = CTHETX(2)
WD2Y = MATB(17)
W2Y = INTGRL(O., WD2Y)
THEYRZ = INTGRL(O.,WZY;
JY1 = LCOGY(2) - L(2.1) * COS(THEXR2)
WDY(2) = WDZY
W{l2) = WY
CTHETY(!2) =THEYRZ * RADEG
WD2Z = MATB(18)
W2Z = INTGRL{O., WD22Z)
THEZRZ = INTGRL(O. W22)
HDZ§2) = WD22

WZ(2) = W22

CTHETZ (2} = THEZRZ * RALEG

ETHETZ12) = 90.2 - CTHETX(2)

ETHEZZ = ETHETZ(Z2) * DEGRA

JZ1 = LTo6G2o2y - L2 1) * COS(ETHEZ!Z
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LCOGY3 = INTGRL(Y3,VELY3)
. LCOGY(3) = LCOGY3
L AZ3 = MATB(24)
L VELZ3 = INTGRL(0O.,AZ3)
LCOGZ3 = INTGRL(Z3,VELZ3)
Y LCOGZ(3) = LCOGZ3
5 WD3X = MATB(25) ’
5 W3X = INTGRL(O.,WD3X)
. THEXR3 = INTGRL(TY3,6W3X)
- JX2 = LCOGX(3) - L(3,1) * COS(TX3)
" WDX(3) = WD3X .
WX(3) = W3X
CTHETXE3§ = THEXR3 * RADEG
ETHETY(3) = CTHETX(3)
WD3Y = MATB(26)
W3Y = INTGRL(O.,WD3Y)
: THEYR3 = INTGRL(O., w3yg
! JY2 = LCOGY(3) - L(3,1) * COS(THEXR3)
_ WDY(3) =
;. wy(3) = w Y
CTHETY(3) = THEYR3 * RADEG
WD3Z = MATB(27)
W3Z = INTGRL(O.,WD32Z)

- THEZR3 = INTGRL(O ,W3Z)
WDZ(3) = WD3Z
WzZ(3) = w3z

CTHETZ$3; = THEZR3 * RADEG

ETHETZ(3) = 90.0 - CTHETX(3)
ETHEZ3 = ETHETZ(B) * DEGRA
JZ2 = LCOGZ(3) - L(3,1) * COS(ETHEZ3)
3 DYNAMIC
2 * COMPUTE THEORITICAL TORQUE,T1X AND T2X
‘ Y = L23,1 * COSETHEXRB;
A 2 = L(3,1) * SIN(THEXR3
FZ2 =-MASS3*AZ3
FY2 = -MASS3 * ay3 i
FZl = FZ2 - MASS2 * 222
FYl = FY2 - MASS2 * AY
g TORYZ2X = EMASS3 * L( l**Z)*WDX(3) -(FZ2 * Y)+ éFYZ * 2)
: TORYlX = (MASS2*L(2 2)*WDX(2)+TORY2X-FZ21*COS(THEXR2)...
: l)+FY1*SIN§THEXR2)*L(2 ,1)-Fz2*L(2, 2)*COS(THEXR2)+FY2...
*SIN(THEXRZ)*L( 2)
* COMPUTE ERROR BETWEEN COMPUTED AND INPUTEDVALUES OF TORQUE AT
* JOINT OME AND TWO
ERRT2X = égTORYZX-szg/ 4.7553; * 100.
END ERRT1X = ((TORY1X-T1X)/ 4.7553) * 100.
> STOP
. FORTRAN b
{ * SUBROUTINE TO COMPUTE THE CROSS PRODUCT OF TWO VECTORS
! SUBROUTINE CPROD(VECTA,VECTB,MI,MJ, MK)
) IMPLICIT REAL*8 (A-2)
‘ DIMENSION VECTA(3),VECTB(3)
w MI = VECTA(2) * VECTB(3) - VECTA(3) * VECTB(2
MJ = VECTA(3) * VECTB(l) - VECTA(l) * VECTB(3
MK = VECTA(1l) * VECTB(2) - VECTA(2) * VECTB(1
RETURN !
END
-4
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